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Abstract
We consider special quasigraded so(n)-valued Lie algebras on higher genus
algebraic curves. Using them we construct new finite-dimensional integrable
Hamiltonian systems. As a main example of our construction, we obtain spin
generalizations of the Clebsch and Neumann integrable systems along with
spin generalization of their higher rank analogues.

PACS numbers: 02.20.Sv, 02.30.Ik

1. Introduction

Infinite-dimensional Lie algebras play an important role in the theory of classical integrable
systems. The most important of them are loop algebras. They were successfully used in order
to produce integrable Hamiltonian systems in the well-known papers of Reyman and Semenov-
Tian-Shansky [1–3]. In the papers of Holod [4–6] new examples of infinite-dimensional Lie
algebras were constructed that could be used for producing classical integrable systems. They
coincide with the special so(3)-valued algebra of meromorphic functions on elliptic curves.
In our paper [7] (see also [8, 9]) we gave higher rank and higher genus generalization of
the Lie-algebraic construction of [5]. As a result we have obtained special quasigraded Lie
algebras g̃H of meromorphic functions on certain algebraic curves H with the values in the
classical matrix Lie algebras g. The main feature of the algebras g̃H is the existence of their
decomposition into the direct sum of two Lie subalgebras g̃H = g̃+

H + g̃
−
H which enables

their application in the theory of finite-dimensional Hamiltonian systems. It is necessary to
mention that subalgebras g̃

−
H for g = gl(n), so(n) were independently introduced in paper

[10] as possible complementary subalgebras to the algebras g̃+ of polynomial functions in the
graded algebras g̃ of formal power series.

In paper [8] using algebras g̃H we have produced new integrable finite-dimensional
systems, generalizing Steklov–Veselov and Steklov–Liapunov integrable systems. Besides,
we have constructed new hierarchies of integrable equations (see [9]) for which corresponding
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integrable Hamiltonian systems play the role of the finite-gap sectors. In papers [11, 12] we
considered special degenerations of the Lie algebras constructed in [7–9] and integrable finite-
dimensional Hamiltonian systems associated with them. In such a way we have obtained the
Clebsch system—an integrable case of the motion of a rigid body in a liquid and the Neumann
integrable system of motion of a particle on a sphere in a second order potential [14] along
with their higher rank generalizations connected with Lie algebras e(n) [11, 12].

In the present paper we continue investigation of the special degenerations of the Lie
algebras constructed in [8, 9] and finite-dimensional integrable systems associated with them.
We consider the most important case of so(n)-valued Lie algebras. We show that using such
algebras it is possible to obtain other interesting integrable systems. The most interesting of
them are ‘spin generalizations’ of the Clebsch and Neumann systems, i.e. generalized Clebsch
and Neumann systems interacting with so(n) tops. In particular, for the case of so(4) we obtain
ordinary Clebsch and Neumann systems interacting with two so(3) spins. The Hamiltonian
of the spin generalization of the Clebsch system reads as follows:

h′
−1(L

(−1)) =
3∑

k=1

m2
k −

3∑
k=1

a−1
k x2

k +
3∑

k=1

a
−1/2
k xk(tk − sk)

where coordinates mk, xk ∈ e(3)∗, tk, sk ∈ so(3)∗ ⊕ so(3)∗ have standard (i.e. repeating the
structure of the corresponding algebras) e(3) ⊕ so(3) ⊕ so(3) Lie–Poisson brackets:

{mi,mj }0 = εijkmk {mi, xj }0 = εijkxk, {xi, xj }0 = 0

{ti, tj }0 = εijktk {si , sj }0 = εijksk, {si , tj }0 = 0

{mi, tj }0 = {xi, tj }0 = {mi, sj }0 = {xi, sj }0 = 0.

The Hamiltonian of the spin generalization of the Neumann system has the form

h′
−1(L

(−1)) =
3∑

k=1

p2
k −

3∑
k=1

a−1
k x2

k +
3∑

k=1

a
−1/2
k xk(tk − sk)

where pk, xk commute with the so(3)-‘spins’ sk and tk with respect to the bracket {, }0, have
canonical brackets

{pi, xj }0 = δij {xi, xj }0 = 0 {pi, pj }0 = 0

and satisfy the constraints
∑3

k=1 xkpk = 0,
∑3

k=1 x2
k = 1.

The structure of the present paper is as follows. In section 2 we describe special so(n)-
valued Lie algebras on the higher genus curves, their dual spaces and invariants of coadjoint
representations. In section 3 the general framework to obtain integrable Hamiltonian systems
and corresponding Lax pairs is exposed using our algebras. In section 4, using the described
framework, we obtain spin generalization of the generalized Clebsch and Neumann systems.

2. Special quasigraded Lie algebras

Let us consider in the space Cn with the coordinates wi the following system of quadrics:

w2
i − w2

j = aj − ai i, j = 1, n (1)

where ai are arbitrary complex numbers. The rank of this system is n − 1, so the substitution

w2
i = w − ai y =

n∏
i=1

wi y2 =
n∏

i=1

w2
i (2)
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solves these equations and defines the equation of the hyperelliptic curve. Hence, equation (1)
defines the embedding of the algebraic curveHwhich is a ramified covering of the hyperelliptic
curve in the linear space Cn.

Remark 1. In the n = 3 case curve H is elliptic. It was first used in the theory of integrable
systems by Sklyanin [13]. For n > 3 curve H was considered also in [10].

Remark 2. The hyperelliptic curve defined by (2) is introduced for the purpose of convenience.
It is convenient to define pairing and dual space with its help. Moreover, there is a reason to
consider this choice of pairing and dual space to be a special one (see remark 5).

Let us consider algebra so(n) and over the field R or C. Let Ii,j ∈ Mat(n, R) be a
matrix defined as (Iij )ab = δiaδjb. Evidently, a basis in the algebra so(n) could be chosen as
Xij ≡ Iij − Ii,j , Xij = −Xji, i, j ∈ 1, . . . , n, with the following commutation relations:

[Xi,j ,Xk,l ] = δk,jXi,l − δi,lXk,j + δj,lXk,i − δk,iXj,l .

Lie algebra s̃o(n)H. For the basic elements Xij of the algebra so(n) we introduce the
following algebra-valued functions on the curve H:

Xm
ij (w) = Xij ⊗ wmwiwj i, j ∈ 1, n m ∈ Z. (3)

The next theorem holds true [8].

Theorem 1.

(i) Elements Xr
ij , r ∈ Z form Z quasigraded Lie algebra s̃o(n)H = ∑

m∈Z(s̃o(n)H)m, where

(s̃o(n)H)m = SpanC

{
Xr

ij

∣∣i, j ∈ 1, n
}
, with the following commutation relations:[

Xr
ij ,X

s
kl

] = δkjX
r+s+1
il − δilX

r+s+1
kj + δjlX

r+s+1
ki − δikX

r+s+1
jl

+ aiδilX
r+s
kj − ajδkjX

r+s
il + aiδikX

r+s
j l − ajδjlX

r+s
ki . (4)

(ii) Algebra s̃o(n)H as a linear space admits a decomposition into the direct sum of two

subalgebras s̃o(n)H = s̃o(n)
+

H + s̃o(n)
−
H, where subalgebras s̃o(n)

+

H and s̃o(n)
−
H are

generated by the elements X0
ij and X−1

ij , respectively.

Algebras constructed in theorem 1 depend on n complex numbers ai—branching points
of the curve H. We may impose different constraints on the numbers ai , i.e. consider different
degenerations on the curve H in order to obtain different algebraic structures that will lead in
the result to the different integrable systems.
Special degeneration of the curve H and algebra s̃o(n)H′ . Let us consider the special case of
the algebra s̃o(n)H, when one of the branching points ai is zero. Let us put, for concreteness,
an = 0, ai �= 0 for i = 1, n − 1. We will denote such curves as H′. Let us introduce the
following notation:

Xm
ij = Xij ⊗ wmwiwj Y m

i = Xin ⊗ wm+1/2wi (5)

where i, j ∈ 1, n − 1; m ∈ Z.
The following corollary of theorem 1 holds.

Corollary 1. Generators Y r
i , Xs

ij where i, j, k, l ∈ 1, n − 1, s, r ∈ Z, satisfy the following
commutation relations:[
Xs

ij ,X
r
kl

] = δkjX
s+r+1
il − δilX

s+r+1
kj + δjlX

s+r+1
ki − δikX

s+r+1
jl

+ aiδilX
s+r
kj − ajδkjX

s+r
il + aiδikX

s+r
j l − ajδjlX

s+r
ki (6a)
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Xs

ij , Y
r
k

] = δkjY
s+r+1
i − δikY

s+r+1
j − ajδkjY

s+r
i + aiδikY

s+r
j (6b)[

Y s
i , Y r

k

] = Xs+r+1
ki (6c)

and form a basis in Z quasigraded, Z2 graded Lie algebra s̃o(n)H′ .

Remark 3. The special attention devoted to this algebra is explained by the fact that it produces
generalized Clebsch and Neumann systems and their spin generalizations. Besides, it coincides
with the higher-rank generalization of the so(3) ‘anisotropic affine algebra’ introduced in [5]
in connection with Landau–Lifshitz equations.

Remark 4. It is, of course, possible to consider other degenerations of the curve H,
and corresponding algebras. In particular, when all numbers ai → 0, i.e. in the rational
degeneration, we obtain loop algebras. Their usage in the theory of integrable systems was
extensively studied by Reyman and Semenov-Tian-Shansky ([1, 2]).

Coadjoint representation and its invariants. In order to define Hamiltonian systems we

have to define coadjoint representation and spaces s̃o(n)
∗
H and s̃o(n)

∗
H′ . We assume that

s̃o(n)
∗
H ⊂ so(n)⊗A and s̃o(n)

∗
H′ ⊂ so(n) ⊗A, where A is an algebra of function on the curve

H. Let ( , ) denote the standard Killing–Kartan (trace) form on so(n). Let us define the pairing

between L(w) ∈ s̃o(n)
∗
H (or L(w) ∈ s̃o(n)

∗
H′) and X(w) ∈ s̃o(n)H (or X(w) ∈ s̃o(n)H′) as

follows:

〈X(w),L(w)〉 = resw=0y
−1(w)(X(w),L(w)). (7)

Under this choice of pairing, the generic element of the dual space will have the form

L(w) =
∑
m∈Z

n∑
i<j

l
(m)
ij wm−1 y(w)

wiwj

X∗
ij . (8)

where coefficient functions l
(k)
ij satisfy skew-symmetry conditions l

(k)
ij = −l

(k)
ji .

From the explicit form of the pairing it follows that the action of the algebra s̃o(n)H on

its dual space s̃o(n)
∗
H coincides with the commutator

ad∗
X(w)L(w) = [L(w),X(w)] (9)

that, in its turn, entails the next statement.

Proposition 1. Functions I 2k(L(w)) = tr L(w)2k , where k ∈ 0, [n/2] are generating functions
of the invariants of the coadjoint representation of the Lie algebras s̃o(n)H and s̃o(n)H′ .

Remark 5. The pairing between Lie algebra s̃o(n)H and its dual space defined by equation (7)

is a special one. Under its choice, linear space s̃o(n)
D

H ≡ s̃o(n)H + s̃o(n)
∗
H is a closed Lie

algebra. Unfortunately, for n > 4 it does not admit a Kostant–Adler scheme and cannot be
used for the construction of integrable systems.

3. Integrable systems via quasigraded Lie algebras

In this section we construct Hamiltonian systems that correspond to the algebras s̃o(n)H and
s̃o(n)H′ , and possess a large number of mutually commuting integrals of motion. To do this
we define Lie–Poisson structures and Lie–Poisson subspaces. All formulae will be explicitly
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written for the case of the algebra s̃o(n)H. Corresponding formulae for s̃o(n)H′ could be
obtained by taking the continuous limit an → 0.

First Lie–Poisson structure. In the space s̃o(n)
∗
H one can define the standard Lie–Poisson

structure using pairing 〈 , 〉. It defines the bracket on P(s̃o(n)
∗
H) (and P(s̃o(n)

∗
H′)) as follows:

{F(L(w)),G(L(w))} = 〈L(w), [∇F,∇G]〉 (10)

where ∇F(L(w)) = ∑
k∈Z

∑n
i<j

∂F

∂l
(k)
ij

X−k
ij .

It is easy to show that for the functions l
(m)
ij Poisson bracket (10) has the form{

l
(n)
ij , l

(m)
kl

} = δkj l
(n+m−1)
il − δil l

(n+m−1)
kj + δjl l

(n+m−1)
ki − δikl

(n+m−1)
j l

+ aiδil l
(n+m)

kj − ajδkj l
(n+m)

il + aiδikl
(n+m)

jl − ajδjll
(n+m)

ki . (11)

From proposition 1 the next statement follows.

Proposition 2. Functions I 2k
m (L(w)) are central for bracket { , } on s̃o(n)

∗
H and s̃o(n)

∗
H′ .

Second Lie–Poisson structure. Let us introduce into the space s̃o(n)
∗
H (and s̃o(n)

∗
H′) the

new Poisson bracket { , }0, which is a Lie–Poisson bracket for the algebra s̃o(n)
0

H, where

s̃o(n)
0

H = s̃o(n)
−
H  s̃o(n)

+

H. Explicitly, this bracket has the following form:{
lnij , l

m
kl

}
0 = −{

lnij , l
m
kl

}
n,m ∈ Z+

{
lnij , l

m
kl

}
0 = {

lnij , l
m
kl

}
n,m ∈ Z− ∪ 0{

lnij , l
m
kl

}
0 = 0 m ∈ Z− ∪ 0, n ∈ Z+ or n ∈ Z− ∪ 0,m ∈ Z+.

We consider the finite-dimensional subspace Ms,p ⊂ s̃o(n)
∗
H defined as

Ms,p =
p∑

m=−s+1

(s̃o(n)
∗
H)m where (s̃o(n)

∗
H)m = SpanC

{
l
(m)
ij wm−1 y(w)

wiwj

X∗
ij |i, j = 1, n

}
.

Bracket { , }0 could be correctly restricted to Ms,p. It follows from the next proposition.

Proposition 3. The subspaces Jp,s = ∑−p−1
m=−∞(s̃o(n)H)m +

∑∞
m=s (s̃o(n)H)m are ideals in

s̃o(n)
0

H.

Proof. It follows from the explicit form of commutation relations in the algebra s̃o(n)
0

H.

Indeed, using the fact that algebra s̃o(n)
0

H is a direct difference of its two subalgebras s̃o(n)
±
H

we obtain that ideals of s̃o(n)
±
H are also ideals of s̃o(n)

0

H. Taking into account that s̃o(n)
±
H

are quasigraded Lie algebras it is easy to deduce that subspaces Jp = ∑−p−1
m=−∞(s̃o(n)H)m

and Js = ∑∞
m=s (s̃o(n)H)m are ideals in the algebras s̃o(n)

−
H and s̃o(n)

+

H, respectively. The
proposition is proved. �

Now we are ready to prove the following important theorem.

Theorem 2. Functions
{
I k
m(L)

}
form a commutative subalgebra with respect to the restriction

of the bracket { , }0 on Ms,p.

Proof. It follows from a combination of the Kostant–Adler scheme and the previous

proposition. Indeed, due to the fact that
{
I k
m(L)

}
are the Casimir functions on s̃o(n)

∗
H they

form a commutative subalgebra with respect to the bracket {, }0 [1]. Hence, they will remain
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commutative after the restriction on Ms,p = (
s̃o(n)

0

H
/
Jp,s

)∗
, due to the fact that projection

onto quotient algebra is a canonical homomorphism. The theorem is proved. �

Remark 6. This theorem gives us a large number of mutually commuting algebras with
respect to the Lie–Poisson bracket functions on the finite-dimensional Poisson spaces Ms,p.
In the next paragraph we construct Hamiltonian and Lax equations for which the constructed
commutative Lie algebras will be algebras of integrals of motion.

Hamiltonian and Lax equations. Let us consider the Hamiltonian equations on the finite-
dimensional Poisson subspace Ms,p of the following form:

dl
(m)
ij

dtkr
= {

l
(m)
ij , I 2k

r

(
l
(m)
kl

)}
0 (12)

where { , }0 is the bracket { , }0 restricted to the subspace Ms,p and tkr is the ‘time’ that
corresponds to one of the above-constructed Hamiltonians I 2k

r .
Let us rewrite Hamiltonian equations (12) in the Lax form. From the general

considerations based on the Kostant–Adler scheme [3], it follows that the next proposition
is true.

Proposition 4. Let I 2k
s be the invariant of the coadjoint representation of s̃o(n)H. Then the

corresponding Hamiltonian equations could be written in the Lax form

dL(w)

dtkr
= ∓[

L(w),Mk±
r (w)

]
(13)

where L(w) ∈ Ms,p, and the operator M(w) is defined as Mk±
r (w) = (

P±∇I 2k
s (L(w))

)∣∣
Ms,p

,

∇I 2k
s (L(w)) =

∞∑
m=−∞

n∑
ij=1

∂I 2k
s

∂l
(m)
ij

X−m
ij (14)

is the algebra-valued gradient of I 2k
s , considered as a function on the space s̃o(n)

∗
H, and P±

are projection operators on the subalgebras s̃o(n)
±
H.

4. Spin generalization of the Clebsch and Neumann integrable systems

In this section we consider the above-constructed Hamiltonian systems in the spaces of small
quasigrade connected with the algebras s̃o(n)H′ and obtain spin generalization of the Clebsch
and Neumann integrable systems.

4.1. Spin generalization of the Clebsch system

Let us consider subspace M1,1. The corresponding Lax operator L(w) ∈ M1,1 has the form

L(w) =
n∑

i<j

(
w−1l

(0)
ij + l

(1)
ij

) y(w)

wiwj

X∗
ij .

Commuting integrals are constructed using expansions in the powers of w of the functions:
I 2k(w) = Tr(L(w))2k . We are mainly interested in the quadratic integrals. Let

h(w) ≡ 1/2I2(w) =
n∑

s=−2

hs

(
l
(1)

ij

)
ws = w−2

∑
i<j


 ∏

k �=i,j

(w − ak)


(

l
(0)

ij + wl
(1)

ij

)2
.
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Let us first calculate the corresponding integrals in the case ai �= 0, i < n, an = 0.
Decomposing the generating function h(w) in powers of the spectral parameter w we obtain

h−2 = (−1)n−2
∑
i<n

a1a2 · · · an−1

ai

(
l
(0)

in

)2

h−1 = (−1)n−1(a1a2 · · · an−1)


n−1∑

i<j

(
l
(0)
ij

)2

aiaj

−
n−1∑
i=1

(
l
(0)
in

)2

a2
i

− 2
n−1∑
i=1

l
(0)

in l
(1)

in

ai

+

(∑
k<n

1

ak

)
h−2




. . .

hn−1 = −
n∑

i<j

(
n∑

k=1

ak − (ai + aj )

)(
l
(1)
ij

)2 − 2l
(0)
ij l

(1)
ij

hn =
n∑

i<j

(
l
(1)
ij

)2
.

The Poisson brackets between the coordinate functions l
(0)
ij and l

(1)
kl have the following form:

{
l
(0)
ij , l

(0)
kl

}
0 = −aiδil l

(0)
kj + ajδkj l

(0)
il − aiδikl

(0)
j l + ajδjl l

(0)
ki (15){

l
(1)
i,j , l

(1)
k,l

}
0 = δk,j l

(1)
i,l − δi,l l

(1)
k,j + δj,l l

(1)
k,i − δk,i l

(1)
j,l (16){

l
(0)

ij , l
(1)

kl

}
0 = 0. (17)

The Lie algebraic structure that is defined by this bracket strongly depends on the constants
ai . We consider the case of the simplest ‘degeneration’, an = 0, ai �= 0 where i < n, that
corresponds to the Lie algebra s̃o(n)H′

n
. In this case we will have

{
l
(0)
ij , l

(0)
kl

}
0 = aiδil l

(0)
kj − ajδkj l

(0)
il + aiδikl

(0)
j l − ajδjl l

(0)
ki (18){

l
(0)
ij , l

(0)
kn

}
0 = aiδikl

(0)
jn − ajδkj l

(0)
in (19){

l
(0)

in , l
(0)

jn

}
0 = 0 (20)

where i, j, k < n. Making the following replacement of the variables:

mij = l
(0)
ij

a
1/2
i a

1/2
j

xk = l
(0)
kn

a
1/2
k

where i, j, k < n (21)

we obtain the standard commutation relations for the Lie algebra e(n − 1):

{mij,mkl}0 = δilmkj − δkjmil + δikmjl − δjlmki

{mij, xk}0 = δikxk − δkjxi {xi, xj }0 = 0.

It follows that this Lie–Poisson bracket (15)–(17) is isomorphic to the Lie–Poisson bracket
of the direct sum e(n − 1) ⊕ so(n). Let us calculate our second-order Hamiltonians in the
above-introduced standard coordinates. Making the replacement of variables we obtain

h−2 = (−1)n−2(a1a2 · · · an−1)
∑
i<n

x2
i

h−1 = (−1)n−1(a1a2 · · · an−1)


n−1∑

i<j

m2
ij

aiaj

−
n−1∑
i=1

x2
i

ai

− 2
n−1∑
i=1

xilin

a
1/2
i

+

(∑
k<n

1

ak

)
h−2
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. . .

hn−1 =
n∑

i<j

(ai + aj )l
2
ij − 2


n−1∑

i<j

mij lij +
n−1∑

i

xi lin


 −

(
n∑

k=1

ak

)
hn−2

hn =
n∑

i<j

l2
ij .

Here lij ≡ l
(1)
ij . Functions hn and h−2 are the Casimir functions of e(n − 1) ⊕ so(n). For the

Hamiltonian of our system, we will take the linear combination of the functions h−2 and h−1:

h′
−1 =


n−1∑

i<j

m2
ij

aiaj

−
n−1∑
i=1

x2
i

ai

− 2
n−1∑
i=1

xilin

a
1/2
i


 .

This is the Hamiltonian of the generalized Clebsch system interacting with generalized so(n)-
top. We call this system spin generalization of the generalized Clebsch system.

Example 1. Let g = so(4). The Lax operator L(w) ∈ M1,1 is written as follows:

L =
3∑

i<j,1

(
l
(1)
ij Xij + l

(1)

i4 Xi4
)

+ w−1
3∑

i<j,1

(
l
(0)
ij Xij + l

(0)

i4 Xi4
)
. (22)

Let l
(1)
k = εijkl

(1)
ij , l

(0)
k = εijkl

(0)
ij . Then, the substitution

mk = (ak)
1/2

(a1a2a3)1/2
l
(0)

k xk = l
(0)
k4

a
1/2
k

lk = l
(1)

k yk = l
(1)

k4

transforms the corresponding Lie–Poisson bracket to the standard so(4) ⊕ e(3) form

{mi,mj }0 = εijkmk {mi, xj }0 = εijkxk {xi, xj }0 = 0 (23)

{li, lj }0 = εijklk {li , yj }0 = εijkyk {yi, yj }0 = εijklk (24)

{mi, lj }0 = {li , xj }0 = {mi, yj }0 = {xi, yj }0 = 0. (25)

In these standard coordinates we obtain for the Hamiltonian h′
−1 the following expression:

h′
−1(L

(−1)) =
3∑

k=1

m2
k −

3∑
k=1

a−1
k x2

k + 2
3∑

k=1

a
−1/2
k xkyk.

Taking into account that so(4) � so(3)⊕so(3), and introducing the corresponding coordinates
of the direct sum tk ≡ 1/2(lk + yk), sk ≡ 1/2(lk − yk)

{ti, tj }0 = εijktk {si , sj }0 = εijksk {ti, sj }0 = 0 (26)

we obtain for our Hamiltonian the following formula:

h′
−1(L

(−1)) =
3∑

k=1

m2
k −

3∑
k=1

a−1
k x2

k +
3∑

k=1

a
−1/2
k xk(tk − sk).

This is the Hamiltonian of the Clebsch system interacting with two so(3) ‘spins’. Finally,
putting tk or sk equal to zero we obtain the Hamiltonian of the Clebsch system that interacts
with the spin −→s ∈ so(3):

h′
−1(L

(−1)) =
3∑

k=1

m2
k −

3∑
k=1

a−1
k x2

k ±
3∑

k=1

a
−1/2
k xksk.
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4.2. Spin generalization of the Neumann system

Let us consider the restriction of the spin generalization of the Clebsch system to special
degenerate coadjoint orbits of the group E(n − 1) × SO(n). Such orbits coincide with the
direct products of the degenerate coadjoint orbits of E(n − 1) and generic orbits of SO(n).
More precisely, we consider orbits of the type Omin × Ogeneric, where Omin are degenerate
orbits of E(n− 1) of the minimal dimensions. It is known that they coincide with T ∗Sn−2 [3].
After restriction onto this orbit elements mij could be parametrized as follows:

mij = xipj − xjpi where
n−1∑
i=1

xipi = 0
n−1∑
i=1

x2
i = r2

and Poisson brackets of xi and pj are canonical,

{pi, xj } = δij {xi, xj } = 0 {pi, pj } = 0.

Let us consider the Hamiltonians of the spin generalization of the Clebsch system, restricted
to the above-described orbit T ∗Sn−2 × Ogeneric:

h−2 = (−1)n−2

(
n−1∏
k=1

ak

)
n−1∑
k=1

x2
k =

(
n−1∏
k=1

ak

)
r2

h−1 = (−1)n−3

(
n−1∏
k=1

ak

)
n−1∑

i<j

(xipj − xjpi)
2 − 2

n−1∑
i=1

xilin

a
1/2
i

− a−1
i x2

i


 −

(
n−1∑
k=1

a−1
k

)
h0

. . .

hn−1 =
n∑

i<j

(ai + aj )l
2
ij − 2


n−1∑

i<j

(xipj − xjpi)lij +
n−1∑

i

xi lin


 −

(
n∑

k=1

ak

)
hn−2

hn =
n∑

i<j

l2
ij .

It is easy to see that
∑n−1

i<j m2
ij = 1

2

∑n−1
i,j=1(xipj − xjpi)

2 = (∑n−1
i=1 x2

i

)(∑
j=1 p2

j

) −(∑n−1
i=1 xipi

)2
. Taking into account

∑n−1
i=1 x2

i = r2 and
∑n−1

i=1 xipi = 0 we obtain
∑n−1

i<j m2
ij =

r2
(∑

j=1 p2
j

)
. From this it follows that on the above coadjoint orbits Hamiltonian h′

−1 acquires
the form

h′
−1 =

(
r2

n−1∑
i=1

p2
i − a−1

i x2
i

)
− 2

n−1∑
i=1

a
−1/2
i xi lin. (27)

This is the Hamiltonian of the generalized Neumann system interacting with the generalized
so(n)-top. We call this system the spin generalization of the generalized Neumann system.

Example 2. Let g = so(4). The corresponding degenerate coadjoint orbit is isomorphic to
the direct product of the orbit of SO(4) and degenerated coadjoint orbit of E(3) − T ∗S2. On
this orbit we have

mi = εijkxjpk where
3∑

k=1

xkpk = 0
3∑

k=1

x2
k = 1

and the corresponding Poisson bracket is canonical:

{pi, xj } = δij , {xi, xj } = 0, {pi, pj } = 0.
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Taking into account that so(4) � so(3) ⊕ so(3) and, hence, li4 = 1/2(tk − sk), where tk and
sk are the generators of so(3) subalgebras, we obtain for the Hamiltonian h′

−1 the following
expression:

h′
−1(L

(−1)) =
3∑

k=1

p2
k −

3∑
k=1

a−1
k x2

k +
3∑

k=1

a
−1/2
k xk(sk − tk). (28)

This is the Hamiltonian of the Neumann system interacting with two so(3) ‘spins’. Finally,
putting tk or sk equal to zero we obtain the Hamiltonian of the Neumann system that interacts
with spin −→s ∈ so(3):

H ′
−4(L

(−1)) =
3∑

k=1

p2
k −

3∑
k=1

a−1
k x2

k ±
3∑

k=1

a
−1/2
k xksk.

Remark 7. Putting lij ≡ 0 in all the cases considered in this section we obtain the usual
Clebsch and Neumann systems and their higher-rank analogues.
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